Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
2.
Biomater Sci ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573023

RESUMO

Titanium (Ti) and its alloys have been widely employed in the treatment of orthopedics and other hard tissue diseases. However, Ti-based implants are bioinert and suffer from bacterial infections and poor osseointegration in clinical applications. Herein, we successfully modified Ti with a porous N-halaminated spermidine-containing polymeric coating (Ti-SPD-Cl) through alkali-heat treatment, surface grafting and chlorination, and it has both excellent antibacterial and osteogenic abilities to significantly enhance osseointegration. The as-obtained Ti-SPD-Cl contains abundant N-Cl groups and demonstrates effective antibacterial ability against S. aureus and E. coli. Meanwhile, due to the presence of the spermidine component and construction of a porous hydrophilic surface, Ti-SPD-Cl is also beneficial for maintaining cell membrane homeostasis and promoting cell adhesion, exhibiting good biocompatibility and osteogenic ability. The rat osteomyelitis model demonstrates that Ti-SPD-Cl can effectively suppress bacterial infection and enhance bone-implant integration. Thus, Ti-SPD-Cl shows promising clinical applicability in the prevention of orthopedic implant infections and poor osseointegration.

5.
Chemosphere ; 353: 141632, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442776

RESUMO

OBJECTIVE: This study aimed to investigate the effect of residential exposure to green space on the incident osteoporosis and further explore the modification effect of genetic susceptibility. METHODS: Participants from the UK Biobank were followed from 2006 to 2010 (baseline) to December 31st, 2022. Using land use coverage, we evaluated exposure to residential surrounding green space, natural environment, and domestic gardens. We used the Cox regression to examine the association between the residential environment and incident osteoporosis. The interactive effects between polygenic risk score (PRS) of osteoporosis and residential environments on incident osteoporosis were investigated. RESULTS: This study included 292,662 participants. Over a median follow-up period of 13.65 years, we documented 9177 incidents of osteoporosis. Per interquartile (IQR) increase in greenness and natural environment at a 300 m buffer was associated with a 4% lower risk of incident osteoporosis [HR = 0.96 (95% CI: 0.93, 0.99)] and [HR = 0.96 (95% CI: 0.93, 0.98)], respectively. We did not identify any interactive effects between genetic risk and residential environment on incident osteoporosis. CONCLUSIONS: This study found that public greenness and natural environments could reduce the risk of incident osteoporosis regardless of genetic predisposition. Developing sustainable and publicly accessible natural environments might benefit populations' bone health.


Assuntos
Parques Recreativos , 60682 , Humanos , Estudos de Coortes , Bancos de Espécimes Biológicos , Predisposição Genética para Doença
6.
Adv Mater ; : e2309141, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38339915

RESUMO

Articular cartilage has an appropriate multilayer structure and superior tribological properties and provides a structural paradigm for design of lubricating materials. However, mimicking articular cartilage traits on prosthetic materials with durable lubrication remains a huge challenge. Herein, an ingenious three-in-one strategy is developed for constructing an articular cartilage-like bilayer hydrogel coating on the surface of ultra-high molecular weight polyethylene (BH-UPE), which makes full use of conceptions of interfacial interlinking, high-entanglement crosslinking, and interface-modulated polymerization. The hydrogel coating is tightly interlinked with UPE substrate through hydrogel-UPE interchain entanglement and bonding. The hydrogel chains are highly entangled with each other to form a dense tough layer with negligible hysteresis for load-bearing by reducing the amounts of crosslinker and hydrophilic initiator to p.p.m. levels. Meanwhile, the polymerization of monomers in the top surface region is suppressed via interface-modulated polymerization, thus introducing a porous surface for effective aqueous lubrication. As a result, BH-UPE exhibits an ultralow friction coefficient of 0.0048 during 10 000 cycles under a load of 0.9 MPa, demonstrating great potential as an advanced bearing material for disc prosthesis. This work may provide a new way to build stable bilayer coatings and have important implications for development of biological lubricating materials.

7.
Cell Chem Biol ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38382532

RESUMO

Stem cells remain quiescent in vivo and become activated in response to external stimuli. However, the mechanism regulating the quiescence-activation balance of bone-marrow-derived mesenchymal stem cells (BM-MSCs) is still unclear. Herein, we demonstrated that CYP7B1 was the common critical molecule that promoted activation and impeded quiescence of BM-MSCs under inflammatory stimulation. Mechanistically, CYP7B1 degrades 25-hydroxycholesterol (25-HC) into 7α,25-dihydroxycholesterol (7α,25-OHC), which alleviates the quiescence maintenance effect of 25-HC through Notch3 signaling pathway activation. CYP7B1 expression in BM-MSCs was regulated by NF-κB p65 under inflammatory conditions. BM-MSCs from CYP7B1 conditional knockout (CKO) mice had impaired activation abilities, relating to the delayed healing of bone defects. Intravenous infusion of BM-MSCs overexpressing CYP7B1 could improve the pathological scores of mice with collagen-induced arthritis. These results clarified the quiescence-activation regulatory mechanism of BM-MSCs through the NF-κB p65-CYP7B1-Notch3 axis and provided insight into enhancing BM-MSCs biological function as well as the subsequent therapeutic effect.

9.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166975, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38043828

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are pluripotent stem cells capable of differentiating into osteocytes, adipocytes and chondrocytes. However, in osteoporosis, the balance of differentiation is tipped toward adipogenesis and the key mechanism is controversial. Researches have shown that, as upstream regulatory elements of gene expression, enhancers ar involved in the expression of identity genes. In this study, we identified enhancers-mediated gene FOXO3 promoting MSC adipogenic differentiation by activating autophagy. METHODS: We integrated data of RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq) and ATAC-sequencing (ATAC-seq) to find the identity gene FOXO3. The expression of FOXO3 protein, adipogenic transcription factors and the substrate of autophagy were measured by western blotting. The Oil Red O (ORO) staining was used to visualize the adipogenesis of MSCs. Immunohistochemistry was used to visualize the FOXO3 expression in adipocytes in bone marrow. Immunofluorescence was used to detect the expression of PPARγ and LC3B. RESULTS: During adipogenesis, enhancers redistribute to genes associated with adipogenic differentiation, among which we identified the pivotal identity gene FOXO3. FOXO3 could promote the expression of the adipogenic transcription factors PPARγ, CEBPα, and CEBPß during adipogenic differentiation, while PPARγ, CEBPα, and CEBPß could in turn bind to FOXO3 and continue to promote FOXO3 expression to form a positive feedback loop. Consistently elevated FOXO3 expression promotes autophagy by activating the PI3K-AKT pathway which mediates adipogenic differentiation. CONCLUSIONS: Pivotal identity gene FOXO3 promotes autophagy by activating PI3K-AKT pathway, which provokes adipogenic differentiation of MSCs. Enhancer-regulated adipogenic identity gene FOXO3 could be an attractive treatment for osteoporosis.


Assuntos
Adipogenia , Osteoporose , Humanos , Adipogenia/genética , Proteínas Proto-Oncogênicas c-akt/genética , PPAR gama/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteína Forkhead Box O3/genética , Fatores de Transcrição , Autofagia/genética
10.
Oncogene ; 43(1): 47-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935976

RESUMO

ZFP36L1, which is a negative regulator of gene transcripts, has been proven to regulate the progression of several carcinomas. However, its role in sarcoma remains unknown. Here, by using data analyses and in vivo experiments, we found that ZFP36L1 inhibited the lung metastasis of osteosarcoma (OS). Knockdown of ZFP36L1 promoted OS cell migration by activating TGF-ß signaling and increasing SDC4 expression. Intriguingly, we observed a positive feedback loop between SDC4 and TGF-ß signaling. SDC4 protected TGFBR3 from matrix metalloproteinase (MMP)-mediated cleavage and therefore relieved the inhibition of TGF-ß signaling by soluble TGFBR3, while TGF-ß signaling positively regulated SDC4 transcription. We also proved that ZFP36L1 regulated SDC4 mRNA decay through adenylate-uridylate (AU)-rich elements (AREs) in its 3'UTR. Furthermore, treatment with SB431542 (a TGF-ß receptor kinase inhibitor) and MK2 inhibitor III (a MAPKAPK2 inhibitor that increases the ability of ZFP36L1 to degrade mRNA) dramatically inhibited OS lung metastasis, suggesting a promising therapeutic approach for the treatment of OS lung metastasis.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Osteossarcoma , Humanos , Retroalimentação , Fator de Crescimento Transformador beta/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , Neoplasias Ósseas/genética , Neoplasias Pulmonares/genética , Linhagem Celular Tumoral , Fator 1 de Resposta a Butirato , Sindecana-4/metabolismo
11.
Adv Sci (Weinh) ; 11(10): e2303388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145956

RESUMO

Regular quiescence and activation are important for the function of bone marrow mesenchymal stem cells (BMMSC), multipotent stem cells that are widely used in the clinic due to their capabilities in tissue repair and inflammatory disease treatment. TNF-α is previously reported to regulate BMMSC functions, including multilineage differentiation and immunoregulation. The present study demonstrates that TNF-α impedes quiescence and promotes the activation of BMMSC in vitro and in vivo. Mechanistically, the TNF-α-induced expression of KAT2A promotes the succinylation of VCP at K658, which inhibits the interaction between VCP and MFN1 and thus inhibits mitophagy. Furthermore, activated BMMSC exhibits stronger fracture repair and immunoregulation functions in vivo. This study contributes to a better understanding of the mechanisms of BMMSC quiescence and activation and to improving the effectiveness of BMMSC in clinical applications.


Assuntos
Células-Tronco Mesenquimais , Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/metabolismo , Mitofagia , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular
12.
Sci Adv ; 9(46): eadf4345, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976359

RESUMO

Iron deficiency (ID) is a widespread condition concomitant with disease and results in systemic dysfunction of target tissues including skeletal muscle. Activated by ID, ferritinophagy is a recently found type of selective autophagy, which plays an important role in various physiological and pathological conditions. In this study, we demonstrated that ID-mediated ferritinophagy impeded myogenic differentiation. Mechanistically, ferritinophagy induced RNF20 degradation through the autophagy-lysosomal pathway and then negatively regulated histone H2B monoubiquitination at lysine-120 in the promoters of the myogenic markers MyoD and MyoG, which inhibited myogenic differentiation and regeneration. Conditional knockout of NCOA4 in satellite cells, overexpression of RNF20 or treatment with 3-methyladenine restored skeletal muscle regenerative potential under ID conditions. In patients with ID, RNF20 and H2Bub1 protein expression is downregulated in skeletal muscle. In conclusion, our study indicated that the ferritinophagy-RNF20-H2Bub1 axis is a pathological molecular mechanism underlying ID-induced skeletal muscle impairment, suggesting potential therapeutic prospects.


Assuntos
Histonas , Ubiquitina-Proteína Ligases , Humanos , Histonas/metabolismo , Músculo Esquelético/metabolismo , Regeneração , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
13.
Adv Mater ; : e2305400, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010313

RESUMO

Wet-adhesive hydrogels have been developed as an attractive strategy for tissue repair. However, achieving simultaneously low swelling and high burst pressure tolerance of wet-adhesive hydrogels is crucial for in vivo application which remains challenges. Herein, a novel super-structured porous hydrogel (denoted as PVA/PAAc-N+ ) is designed via facile moisture-induced phase separation-solvent exchange process for obtaining porous polyvinyl alcohol (PVA) hydrogel as dissipative layer and in situ photocuring technology for entangling quaternary ammonium-functionalized poly(acrylic acid)-based wet-adhesive layer (PAAc-N+ ) with the porous surface of PVA layer. Benefitting from the ionic crosslinking between quaternary ammonium ions and carboxylate ions in PAAc-N+ wet-adhesive layer as well as the high crystallinity induced by abundant hydrogen bonds of PVA layer, the hydrogel has unique ultralow swelling property (0.29) without sacrificing adhesion strength (63.1 kPa). The porous structure of PVA facilitates the mechanical interlock at the interface between PAAc-N+ wet-adhesive layer and tough PVA dissipative layer, leading to the ultrahigh burst pressure tolerance up to 493 mm Hg and effective repair for porcine heart rupture; the PVA layer surface of PVA/PAAc-N+ hydrogel can prevent postoperative adhesion. By integrating ultralow swelling, ultrahigh burst pressure tolerance, and anti-postoperative adhesion properties, PVA/PAAc-N+ hydrogel shows an appealing application prospect for tissue repair.

14.
Cell Mol Life Sci ; 80(11): 325, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831180

RESUMO

Increasing evidence indicates that circular RNAs (circRNAs) accumulate in aging tissues and nonproliferating cells due to their high stability. However, whether upregulation of circRNA expression mediates stem cell senescence and whether circRNAs can be targeted to alleviate aging-related disorders remain unclear. Here, RNA sequencing analysis of differentially expressed circRNAs in long-term-cultured mesenchymal stem cells (MSCs) revealed that circSERPINE2 expression was significantly increased in late passages. CircSERPINE2 small interfering RNA delayed MSC senescence and rejuvenated MSCs, while circSERPINE2 overexpression had the opposite effect. RNA pulldown followed by mass spectrometry revealed an interaction between circSERPINE2 and YBX3. CircSERPINE2 increased the affinity of YBX3 for ZO-1 through the CCAUC motif, resulting in the sequestration of YBX3 in the cytoplasm, inhibiting the association of YBX3 with the PCNA promoter and eventually affecting p21 ubiquitin-mediated degradation. In addition, our results demonstrated that senescence-related downregulation of EIF4A3 gave rise to circSERPINE2. In vivo, intra-articular injection of si-circSerpine2 restrained native joint-resident MSC senescence and cartilage degeneration in mice with aging-related osteoarthritis. Taken together, our findings provide strong evidence for a regulatory role for the circSERPINE2/YBX3/PCNA/p21 axis in MSC senescence and the therapeutic potential of si-circSERPINE2 in alleviating aging-associated syndromes, such as osteoarthritis.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite , Camundongos , Animais , Antígeno Nuclear de Célula em Proliferação , RNA Circular/genética , RNA Circular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Senescência Celular/genética , RNA Interferente Pequeno/metabolismo , Osteoartrite/metabolismo
16.
Cancer Lett ; 576: 216412, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769797

RESUMO

The function of signal regulatory protein alpha (SIRPA) has been well studied in macrophages and dendritic cells, but relatively less in tumors. Notably, SIRPA is upregulated in osteosarcoma tissues, particularly in metastatic tissues, and is associated with unfavorable clinical outcomes. Knockdown of SIRPA impaired OS cell migration by decreasing specificity protein 1 (SP1) stability and arginine uptake. Importantly, SIRPA phosphorylated SP1 at threonine 278 (Thr278) through extracellular signal-regulated kinase (ERK) activation to protect SP1 from proteasomal degradation. In addition, SP1 increased solute carrier family 7 member 3 (SLC7A3) expression by binding to the SLC7A3 promoter and increased the capability of arginine uptake, thereby facilitating OS cell migration. More interestingly, arginine promoted the stability of SP1 in an ERK-independent manner and thus formed the "SP1 stabilization circle". Combined treatment with the anti-SIRPA antibody and arginase, which blocked the circle, impaired tumor metastasis in mice bearing xenografts formed from SIRPA-overexpressing cells. In summary, our study demonstrates that the upregulation of SIRPA promotes OS metastasis via the "SP1 stabilization circle" and SLC7A3-mediated arginine uptake, which might serve as a target for OS treatment.

17.
J Nanobiotechnology ; 21(1): 280, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598147

RESUMO

Sustained inflammatory invasion leads to joint damage and progressive disability in several autoimmune rheumatic diseases. In recent decades, targeting M1 macrophage polarization has been suggested as a promising therapeutic strategy for autoimmune arthritis. P300/CBP-associated factor (PCAF) is a histone acetyltransferase (HAT) that exhibits a strong positive relationship with the proinflammatory microenvironment. However, whether PCAF mediates M1 macrophage polarization remains poorly studied, and whether targeting PCAF can protect against autoimmune arthritis in vivo remains unclear. Commonly used drugs can cause serious side effects in patients because of their extensive and nonspecific distribution in the human body. One strategy for overcoming this challenge is to develop drug nanocarriers that target the drug to desirable regions and reduce the fraction of drug that reaches undesirable targets. In this study, we demonstrated that PCAF inhibition could effectively inhibit M1 polarization and alleviate arthritis in mice with collagen-induced arthritis (CIA) via synergistic NF-κB and H3K9Ac blockade. We further designed dextran sulfate (DS)-based nanoparticles (DSNPs) carrying garcinol (a PCAF inhibitor) to specifically target M1 macrophages in inflamed joints of the CIA mouse model via SR-A-SR-A ligand interactions. Compared to free garcinol, garcinol-loaded DSNPs selectively targeted M1 macrophages in inflamed joints and significantly improved therapeutic efficacy in vivo. In summary, our study indicates that targeted PCAF inhibition with nanoparticles might be a promising strategy for treating autoimmune arthritis via M1 macrophage polarization inhibition.


Assuntos
Artrite , NF-kappa B , Humanos , Animais , Camundongos , Terpenos , Macrófagos
18.
Exp Mol Med ; 55(8): 1743-1756, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37524872

RESUMO

Improving health and delaying aging is the focus of medical research. Previous studies have shown that mesenchymal stem cell (MSC) senescence is closely related to organic aging and the development of aging-related diseases such as osteoarthritis (OA). m6A is a common RNA modification that plays an important role in regulating cell biological functions, and ALKBH5 is one of the key m6A demethylases. However, the role of m6A and ALKBH5 in MSC senescence is still unclear. Here, we found that the m6A level was enhanced and ALKBH5 expression was decreased in aging MSCs induced by multiple replications, H2O2 stimulation or UV irradiation. Downregulation of ALKBH5 expression facilitated MSC senescence by enhancing the stability of CYP1B1 mRNA and inducing mitochondrial dysfunction. In addition, IGF2BP1 was identified as the m6A reader restraining the degradation of m6A-modified CYP1B1 mRNA. Furthermore, Alkbh5 knockout in MSCs aggravated spontaneous OA in mice, and overexpression of Alkbh5 improved the efficacy of MSCs in OA. Overall, this study revealed a novel mechanism of m6A in MSC senescence and identified promising targets to protect against aging and OA.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Células-Tronco Mesenquimais , Osteoartrite , Animais , Camundongos , Desmetilação , Peróxido de Hidrogênio , Osteoartrite/genética , Estabilidade de RNA , RNA Mensageiro/genética , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo
19.
Bone Res ; 11(1): 30, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37280207

RESUMO

As the major cell precursors in osteogenesis, mesenchymal stem cells (MSCs) are indispensable for bone homeostasis and development. However, the primary mechanisms regulating osteogenic differentiation are controversial. Composed of multiple constituent enhancers, super enhancers (SEs) are powerful cis-regulatory elements that identify genes that ensure sequential differentiation. The present study demonstrated that SEs were indispensable for MSC osteogenesis and involved in osteoporosis development. Through integrated analysis, we identified the most common SE-targeted and osteoporosis-related osteogenic gene, ZBTB16. ZBTB16, positively regulated by SEs, promoted MSC osteogenesis but was expressed at lower levels in osteoporosis. Mechanistically, SEs recruited bromodomain containing 4 (BRD4) at the site of ZBTB16, which then bound to RNA polymerase II-associated protein 2 (RPAP2) that transported RNA polymerase II (POL II) into the nucleus. The subsequent synergistic regulation of POL II carboxyterminal domain (CTD) phosphorylation by BRD4 and RPAP2 initiated ZBTB16 transcriptional elongation, which facilitated MSC osteogenesis via the key osteogenic transcription factor SP7. Bone-targeting ZBTB16 overexpression had a therapeutic effect on the decreased bone density and remodeling capacity of Brd4fl/fl Prx1-cre mice and osteoporosis (OP) models. Therefore, our study shows that SEs orchestrate the osteogenesis of MSCs by targeting ZBTB16 expression, which provides an attractive focus and therapeutic target for osteoporosis. Without SEs located on osteogenic genes, BRD4 is not able to bind to osteogenic identity genes due to its closed structure before osteogenesis. During osteogenesis, histones on osteogenic identity genes are acetylated, and OB-gain SEs appear, enabling the binding of BRD4 to the osteogenic identity gene ZBTB16. RPAP2 transports RNA Pol II from the cytoplasm to the nucleus and guides Pol II to target ZBTB16 via recognition of the navigator BRD4 on SEs. After the binding of the RPAP2-Pol II complex to BRD4 on SEs, RPAP2 dephosphorylates Ser5 at the Pol II CTD to terminate the transcriptional pause, and BRD4 phosphorylates Ser2 at the Pol II CTD to initiate transcriptional elongation, which synergistically drives efficient transcription of ZBTB16, ensuring proper osteogenesis. Dysregulation of SE-mediated ZBTB16 expression leads to osteoporosis, and bone-targeting ZBTB16 overexpression is efficient in accelerating bone repair and treating osteoporosis.

20.
J Orthop Translat ; 40: 80-91, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37333461

RESUMO

Background: Abnormal osteoclast and osteoblast differentiation is an essential pathological process in osteoporosis. As an important deubiquitinase enzyme, ubiquitin-specific peptidase 7 (USP7) participates in various disease processes through posttranslational modification. However, the mechanism by which USP7 regulates osteoporosis remains unknown. Herein, we aimed to investigate whether USP7 regulates abnormal osteoclast differentiation in osteoporosis. Methods: The gene expression profiles of blood monocytes were preprocessed to analyze the differential expression of USP genes. CD14+ peripheral blood mononuclear cells (PBMCs) were isolated from whole blood collected from osteoporosis patients (OPs) and healthy donors (HDs), and the expression pattern of USP7 during the differentiation of CD14+ PBMCs into osteoclasts was detected by western blotting. The role of USP7 in the osteoclast differentiation of PBMCs treated with USP7 siRNA or exogenous rUSP7 was further investigated by the F-actin assay, TRAP staining and western blotting. Moreover, the interaction between high-mobility group protein 1 (HMGB1) and USP7 was investigated by coimmunoprecipitation, and the regulation of the USP7-HMGB1 axis in osteoclast differentiation was further verified. Osteoporosis in ovariectomized (OVX) mice was then studied using the USP7-specific inhibitor P5091 to identify the role of USP7 in osteoporosis. Results: The bioinformatic analyses and CD14+ PBMCs from osteoporosis patients confirmed that the upregulation of USP7 was associated with osteoporosis. USP7 positively regulates the osteoclast differentiation of CD14+ PBMCs in vitro. Mechanistically, USP7 promoted osteoclast formation by binding to and deubiquitination of HMGB1. In vivo, P5091 effectively attenuates bone loss in OVX mice. Conclusion: We demonstrate that USP7 promotes the differentiation of CD14+ PBMCs into osteoclasts via HMGB1 deubiquitination and that inhibition of USP7 effectively attenuates bone loss in osteoporosis in vivo.The translational potential of this article:The study reveals novel insights into the role of USP7 in the progression of osteoporosis and provides a new therapeutic target for the treatment of osteoporosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...